Problem Set 11.3

Integral Test

Let f be a <u>continuous, positive, decreasing</u> function on the interval $[1,\infty)$ and suppose that $a_n=f(n)$ for all $n=1,2,3,\cdots$.

Then $\int_{1}^{\infty} f(x) dx$ converges $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ converges.

 $\stackrel{\sim}{\neg}$, $\int_{1}^{\infty} f(x) dx$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges

 $\int_{1}^{\infty} f(x) dx \text{ diverges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}$

- 1. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if
- 2. Use the <u>Integral Test</u> to show that the given series is converges
- (1) $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$
- $(2) \sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$

Problem Set 11.4

(Comparison Test) Suppose that $0 \le a_n \le b_n$ for $n \ge N$.

- (i) $\sum b_n$ converges $\Rightarrow \sum a_n$ converges.
- (ii) $\sum a_n$ diverges $\Rightarrow \sum b_n$ diverges.

(Limit Comparison Test)

Suppose that $a_n \ge 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.

- (i) $0 < L < \infty \implies \sum a_n$ and $\sum b_n$ converge or diverge together.
- (ii) $L\!=\!0$ and $\sum\!b_n$ converges \Rightarrow $\sum\!a_n$ converges.
- (iii) $L = \infty$ and $\sum b_n$ diverges $\Rightarrow \sum a_n$ diverges.
- 3. Determine whether the given series converges or diverges and give a reason for your conclusion.
- $(1) \sum_{n=1}^{\infty} \frac{\sin^2 n}{n \sqrt{n}}$
- (2) $\sum_{n=1}^{\infty} \frac{n}{1+n^2}$

Problem Set 11.5

(Alternating Series Test)

Let $\sum_{n=1}^{\infty} (-1)^{n+1}b_n = b_1 - b_2 + b_3 - b_4 + \cdots$ be an alternating series where $b_n > 0$. Then, $\sum_{n=1}^{\infty} (-1)^{n+1}b_n$ converges if (i) $\lim b_n = 0$ and (ii) $b_n \geq b_{n+1}$ for $n \geq N$.

- 4. Determine whether the given series converges or diverges and give a reason for your conclusion.
- (1) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1}$
- (2) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n-1}{n}$

Problem Set 11.6

(Absolute Convergence Test)

 $\sum |a_n|$ converges $\Rightarrow \sum a_n$ converges.

(Ratio Test)

Let $\sum a_n$ be a series with $a_n \neq 0$ and $\lim_{n \to \infty} \frac{\left|a_{n+1}\right|}{\left|a_n\right|} = L$.

- (i) $L < 1 \implies \sum a_n$ converges absolutely (hence converges).
- (ii) $L > 1 \implies \sum a_n$ diverges.
- (iii) $L=1 \Rightarrow$ the test is inconclusive.

(Root Test)

Let $\sum a_n$ be a series with $a_n \neq 0$ and $\lim_{n \to \infty} \sqrt{|a_n|} = L$.

- (i) $L < 1 \ \Rightarrow \ \sum a_n$ converges absolutely (hence converges).
- (ii) $L > 1 \implies \sum a_n$ diverges
- (iii) $L=1 \Rightarrow$ the test is inconclusive.
- 5. Determine whether the given series converges or diverges and give a reason for your conclusion.
- $(1) \sum_{n=1}^{\infty} \frac{\sin n}{n \sqrt{n}}$

(2)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{3^n}$$